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Abstract. The maximal Abelian subalgebras (MASASs) of the Euclidegp, 0) and pseudo-
euclideane(p, 1) Lie algebras are classified into conjugacy classes under the action of the
corresponding Lie groupB(p, 0) andE(p, 1), and also under the conformal grou@sp+1, 1)

and O(p + 1, 2), respectively. The results are presented in terms of decomposition theorems.
For e(p, 0) orthogonally indecomposable MASAs exist only fer= 1 andp = 2. Fore(p, 1),

on the other hand, orthogonally indecomposable MASAs exist for all valugs dhe results

are used to construct new coordinate systems in which wave equations and Hamilton—Jacobi
equations allow the separation of variables.

Résune. Les sous-algbres maximales @liennes (SAMASs) d’algbres Euclidiennes(p, 0) et
pseudo-euclidiennes p, 1) sont classifes en classes de conjugasion sous I'action des groupes
de Lie correspondant&(p, 0) et E(p, 1). Elles sont aussi class#fs sous I'action des groupes
conformesO(p + 1,1) et O(p + 1,2). Les iesultats sont presérg dans des &oremes

de decompositions. Pouf(p,0), les SAMAs orthogonallement indecomposables existent
seulement poup = 1 et p = 2. Poure(p, 1), les SAMAs orthogonalement indecomposables
existent pour toutes les valeurs ge Les iesultats sont utiliss pour construire des nouveau
sysemes de coordo@es, dans lesquelles léguations d'onde et leBquations de Hamilton—
Jacobi admettent la separation de variables.

1. Introduction

The stage for much of mathematical physics is the real flat SRacgith a non-degenerate
indefinite metric of signaturép, ¢). We shall denote this spadé(p, ¢q) with p + ¢ = n.
The isometry group of this space is the pseudo-euclidean gigppg) and the conformal
group isC(p, q) ~ O(p+1, g +1) (the pseudo-orthogonal group i+ ¢ + 2 dimensions,
acting locally and nonlinearly oM (p, ¢)).

The purpose of this article is to present a classification of the maximal Abelian
subalgebras (MASAS) of the real Euclidean and pseudo-euclidean Lie algghprd®d =
e(p) ande(p, 1). The classification is first performed with respect to conjugation under the
corresponding Lie groupB(p, 0) = E(p) and E(p, 1), respectively, and it also provides a
classification of the connected maximal Abelian subgroups of the corresponding groups
E(p) and E(p,1). We also present a classification of MASAs of the corresponding
conformal algebras(p, 0) ~ o(p+1, 1) andc(p, 1) ~ o(p+1, 2) under the corresponding
groupsO(p + 1,1) and O(p + 1, 2). This classification is used to show (fgr= 0 or 1)
which MASAs of e(p, g) are also MASAs ob(p + 1, ¢ + 1) and which MASAs that are
inequivalent undek (p, ¢) are nevertheless mutually conjugated under the larger conformal
groupO(p+1,q+1).

0305-4470/98/071831+28$19.5@C) 1998 IOP Publishing Ltd 1831
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The classification of the MASAS &f(p, g) (¢ = 0, 1) will be used to address a physical
problem: the separation of variables in Laplace—Beltrami and Hamilton—Jacobi equations
in the corresponding spacés(p, q).

The motivation for our study of subgroups of Lie groups and subalgebras of Lie
algebras is multifold. For instance, consider any physical problem leading to a system of
differential, difference, algebraic, integral or other equations. Let the set of all solutions of
the system be invariant under some Lie gra@upthe ‘symmetry group’. Special solutions,
corresponding to special boundary, or initial conditions, can be constructed as ‘invariant
solutions’, invariant under some subgroup of the graudl, 2]. For linear equations,
or for Hamilton—Jacobi type equations, solutions obtained by separation of variables are
examples of invariant solutions. While all types of subgroGfasc G are relevant to this
problem, Abelian subgroups provide particularly simple reductions and particularly simple
coordinate systems. Indeed, each one-dimensional subalgebra of an Abelian symmetry
algebra will provide an ‘ignorable’ variable [3-8], i.e. a variable that does not figure in the
metric tensor (a ‘cyclic’ variable in classical mechanics).

Another example of the application of maximal Abelian subgroups of an invariance
group is in any quantum theory, where Abelian subalgebras provide sets of commuting
operators that characterize states of a physical system. The system itself is characterized
by the Casimir operators of the group. Complete information about possible quantum
numbers would be provided by constructing MASAs of the enveloping algebra of the Lie
algebraL of G. MASAs of the Lie algebra itself provide additive quantum numbers.

A third application is in the theory of integrable systems, both finite and infinite
dimensional, where MASAs of any underlying Lie algebra provide integrals of motion
in involution, commuting flows, and other basic information about the systems.

A series of earlier papers was devoted to MASAs of the classical Lie algebras, such
assp(2n, R) and sp(2n, C) [9], su(p, q) [10], so(n, C) [11] and so(p, ¢) [12]. In all
MASAs of simple and semisimple Lie algebras Cartan subalgebras on the one hand, and
maximal Abelian nilpotent algebras (MANSSs) on the other, play a special role. The Cartan
subalgebras are their own normalizers [13] and consist entirely of non-nilpotent elements.
For a complex semisimple Lie algebra there is, up to conjugacy, only one Cartan subalgebra.
For real semisimple Lie algebras they were classified by Kostant [14] and Sugiura [15].
Maximal Abelian nilpotent subalgebras consist entirely of nilpotent elements (represented by
nilpotent matrices in any finite dimensional representation). They were studied by Kravchuk
for sl(n, C) and his results are summed up in book form [16]. Maltsev obtained all MANSs
of maximal dimension for the simple Lie algebras [17]. Those of minimal dimension have
also been studied [18].

More recently, the study of MASAs was extended to inhomogeneous classical Lie
algebras, or finite dimensional affine Lie algebras, starting from the complex Euclidean Lie
algebrase(n, C) [19].

The next natural step is to consider the real Euclidean and pseudo-euclidean algebras
e(p,q) for p > q > 0. This study is initiated in the present paper, where we concentrate
on the values; = 0 and 1. On the one hand, these are the most important in physical
applications, since they include the Lie algebras of the groups of maligps of Euclidean
spaces and: (p, 1) of Minkowski spaces. On the other, they are the simplest ones to treat,
so all results are entirely explicit. The general case ¢f 2 will be treated separately and
is more complicated from a mathematical point of view.

The classification strategy and some general results on the MASAS0f;) are
presented in section 2. The real Euclidean algelfj® is treated in section 3, where
we also list the MASAs ofo(p, 1) and the classification of MASAs of(p) under the
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action of the groupO(p + 1, 1). Section 4 then treats MASAs @i p, 1). Section 5 lists
results on MASAs ob(p, 2) and the classification of MASAs af(p, 1) under the action

of the conformal groupO(p + 1,2) of the compactified Minkowski spac# (p,1). In
other words, certain MASAS not conjugated und#tp, 1) are conjugated under the larger
groupO(p + 1, 2). MASAs of e(p, 1) are used in section 6 to obtain the maximal Abelian
subgroups of(p, 1). These in turn provide us with all separable coordinate systems in the
Minkowski spaceM (p, 1) with a maximal number of ignorable variables. Some conclusions
are drawn in section 7.

2. General formulation

2.1. Some definitions

We will be classifying maximal Abelian subalgebras of the pseudo-euclidean Lie algebra
e(p, q) into conjugacy classes under the action of the pseudo-euclidean Lie §Qug).
A convenient realization of this algebra and this group is by real matriGesd H, satisfying

X «o 1
Y(X,0) = Y = X eR™ g e R™ 2.1)
00
G
H= ( “) G eR™ g R 2.2)
0 1

respectively, wher& and G satisfy
XK+KX"=0 GKG" =K
K =K' e R™" n=p+q detK #0 (2.3)
SgnK = (p, q) p=2q=20

respectively. Here sgki denotes the signature €, with p the number of positive
eigenvalues ofK and g the number of negative ones. We shall also make use of an
‘extended’ matrixKe € R"TDx0+D satisfying

K O
Ke = ( ) YKo+ KeYT =0. (2.4)
0 O

A convenient basis for the algeltép, ¢) is provided by: translationsP,, andn(n—1)/2
rotations and pseudorotatiois,,. The commutation relations for this basis are

[Lits Lap] = SkaLiv — SkpLia — SiaLip + ivLia
[Lap, Lys] =88y Las — 8psLay — 8ayLps + SasLpy,
[Lit, Lapl = SkaLip — SiaLigp (2.5)
[Lia, Lgy]l = 8apLiy — SayLig
[Lag, Lip] = 8puLai + 84iLpy
wherei, k,a,b < pandp <, B8,y,8, u < ¢
[Pos Lyv] = o Py — av Py

(P, P]=0 (2.6)
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forO<o,u,v< p+gq,

811 =822="""=&pp = —&p+lp+l = " = —&ptq.ptq = 1
guw =0 for u #v.
A standard realization of this basis in terms of differential operators is given by
a a a
P, = Lik = Xi — — Xk 7— 2.7
o 0xy, g X ¢ ax; (2.7)

fori<i<k<porp+1<i<k<p+gqand

d d
Ly=—\xx—+xi— 1<i<p p+1<k<p+gq.
0x; Xy

From the above discussion we see that the pseudo-euclidean Lie algebra is the
semidirect sum of the pseudo-orthogonal Lie algelia ¢) and an Abelian algebr@ (n)
of translations.

SinceT (n) is an ideal ine(p, ¢), we can consider the adjoint representation@f, ¢)
on T(n). Abusing notation, we use the same lett&s. .., P,, Ppi1, ..., Pp4, for basis
vectors in this representation. The metric tenggr defined above provides an invariant
scalar product on the representation space

(P, Q)= g/wPuQv' (28)

We shall call vectors satisfying? > 0, P2 < 0 and P2 = 0 (P # 0) positive length,
negative length and isotropic, respectively.
We also need to define some basic algebraic concepts.

Definition 2.1.The centralizer ceLo, L) of a Lie algebral.y € L is a subalgebra of.
consisting of all elements ih, commuting elementwise withg:

centLo, L) = {e € L|[e, Lo] = 0}. (2.9)

Definition 2.2. A maximal Abelian subalgebra, (MASA) of L is an Abelian subalgebra,
equal to its centralizer

[Lo, Lol =0 centLg, L) = Lo. (2.10)
Definition 2.3.A splitting subalgebrd., of the semidirect sum

L=FsN [F,F]CF [F,NJCN [N,N]JCN (2.11)
is itself a semidirect sum of a subalgebrafofand a subalgebra a¥:

Lo = Fy> Ny FoCF NoyCN (2.12)
(or conjugate to such a semidirect sum).

All other subalgebras of. = F » N are callednon-splitting subalgebras
An Abelian splitting subalgebraf L = F > N is a direct sum

Lo = Fo® Ny FoCF NoCN. (2.13)

Definition 2.4.A maximal Abelian nilpotent subalgebra (MANS3Y of a Lie algebraL is
a MASA, consisting entirely of nilpotent elements, i.e. it satisfies

[M.M] =0 (e, Mmm]---],, =0 (2.14)

for some finite numbem (we commuteM with L m times).
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Let us now consider the pseudo-euclidean spEce, ¢), i.e. R",n = p + ¢ with an
invariant quadratic form given by the matri of equation (2.3):

ds? = dx"Kdx. (2.15)
The group and Lie algebra actions are given by

x'=Gx+a X =Xx+a (2.16)
respectively, with(X, «) and (G, a) as in equations (2.1) and (2.2).

Definition 2.5.A subalgebralg C e(p, g) is orthogonally decomposable if it preserves an
orthogonal decomposition off (p, q)

M(p,q) = M(p1,q1) ® M(p2, q2) prt+p2=p qgu+qg2=¢q (2.17)

into two (or more) non-empty subspaces. It is called orthogonally indecomposable
otherwise.

2.2. Classification strategy

The classification of MASAs 0é(p, ¢q) is based on the fact tha{p, ¢) is the semidirect
sum of the Lie algebra(p, q) and an Abelian idedl (n) (the translations). We use here a
modification of a procedure described earlier [19] ¢, C). We proceed in five steps.

1. Classify subalgebraB(k,, k_, ko) of T(n). They are characterized by a triplet of non-
negative integersk.,, k_, ko) wherek,, k_ andky are the numbers of positive, negative
and isotropic vectors in an orthogonal basis, respectively.

2. Find the centralize€ (k. , k_, ko) of T (k., k_, ko) in o(p, q):
C(k-‘r’ k—’ kO) = {X € 0(17’ (*I)|[X, T(k-‘ra k—v kO)] = 0} (218)

3. Construct all MASAs ofC (k. k_, ko) and classify them under the action of normalizer
Nor[T (ky, k_, ko), G] of T'(ky, k_, ko) in the groupG ~ E(p, q).
4. Obtain a list of splitting MASAs o&(p, ¢) by forming the direct sums

C(k-‘r’k—vko) S T(k-‘r’k—?ko) (219)

and dropping all such algebras that are not maximal from the list.

5. Complement the basis @f(k,, k_, ko) to a basis off' (rn) in each case and construct all
non-splitting MASAs. The procedure is described below in subsection 4.2.

This general strategy can also be expressed in terms of sets of matrices of the form
(2.1)—(2.4).
The subalgebrd (k. , k_, ko) can be represented by the matrices

Ok, &

Op-+q—2Kk0—k; —k_

(2.20)

< = O O
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I, 0

Ke=| I : (2.21)

where Ko has the signaturép —k, —ko, g —k_ —ko).
The centralizerC (ky, k_, ko) of T(ky, k_, ko) will then be represented by the block
diagonal matrices

a
Il
<
Il
o
o L

Y
_RAT
a (2.22)

Yy =-7T SK+KS"=0.

The Lie algebra of matrice§M} represents a subalgebra @fp —k,, g—k_) and we
need to classify the MASAs af(p —k., g —k_) contained in{M}. Such MASAs were
studied elsewhere [12] and we shall recall some basic facts here.

A MASA of o(p, q) is characterized by a set of matric&s and a ‘metric’ matrix
K, satisfying equation (2.3). A MASA can be orthogonally indecomposable (OID), or
orthogonally decomposable (OD). If it is OD, we decompose it, i.e. transform it, together
with K, into block diagonal form. Each block is an OID MASA of somép;, ¢;),
> pi = p,Y_qi = q. At most one of the blocks is a MANS.

From the above we can see that the MASA¢Gp, ¢) will have the following general
form:

O, A Y &
S —KpaAT
O
M= M (2.23)
O, X
Oy
0,
I,
Kpig:
I,
Ke = Ko, (2.24)
Iy,
—Ii_
01

where M; is a MASA of o(p», g2) not containing a MANSp = p; + p2 + k. + ko and
g = q1+ g2+ k_ + ko. The MASA M; can be absent (whep, = g, = 0). It may be
orthogonally decomposable.
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The block
0, A Y
Mog=] 0 S —-K MlAT
0 0o 0, (2.25)

Y+1Y'=0 SKpigr + Kppge ST =0

represents a MANS af(p1 + ko, g1 + ko), SOS € RP1ravx(pitan) js g nilpotent matrix. For
ko = 0 the MANS My is absent.

191

2.3. Embedding into the conformal Lie algebra

The algebrao(p + 1,9 + 1) contains the rotations and pseudorotatidng, translations
P,, the dilation D and the proper conformal transformatio@ig. The realization of the
additional basis elements in terms of differential operators is given by

d d 1 a0
D= o Ca: aaXara 7 T FWMafo P 2.26
* 0Xg 8aatat 0Xg 2(x & ﬂxﬁ)axo ( )

They satisfy the following commutation relations:
[P;u CD(] = ZgMaD - zgaaLua

[C(x’ L;w] = gomcu - gavcu

[D,L,]=0 (2.27)
[P.,.D] =P,
[C., D] =—-C,.
A matrix representation of(p + 1, g + 1) is
d o 0 1
MC = ,BT Xo —KoOlT KC = Ko
0 —pKo 4 1 (2.28)

XoKo + KoXg =0

whereaq, 8, d, Xo represent translations, conformal transformations, the dilation, rotations
and pseudorotations, respectively has the signaturép, g). We have

McKe + KeM[ = 0. (2.29)

We see that in equation (2.28) the algebta, ¢) is embedded as a subalgebra of one of

the maximal subalgebras ofp+1, ¢+1), namely the similitude algebra s{m, ¢) obtained
by setting8 = 0in (2.28). The MASAs ok(p, ¢) are thus embedded intgp+1, g+1). In
each case we shall determine whether a MASA(@@f, ¢) is also maximal ir(p+1, g+1).
Conversely this representation can be used to determine whether a MAGA6fL, g +1)
is contained ire(p, ¢). Finally, we shall use it to establish possible conformal equivalences
between MASASs ok(p, ¢) that are inequivalent undet(p, ¢).

3. MASAs of e(p, 0) and o(p, 1)

3.1. Classification of all MASAs of e(p, & e(p)

The metric is positive definite and, hence, a subspace of the translations is completely
characterized by its dimension.
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A basis fore(p) is given byLy, 1<i <k < p,andPy, ..., P,.

Theorem 3.1Every MASA of e(p, 0) splits into the direct sumd (k) = F (k) & T (k) and
is E(p, 0) conjugate to precisely one subalgebra with

F(k) ={Li2, L34, ..., Lo—1.21} T(k) ={Pas1,..., P}
wherek is such thatp — k is even p — k = 2I).

Proof. We takeT (k) = {Pp—k+1, ..., Pp}. Its centralizer ino(p,0) is o(p — k,0). This
algebra has just one class of MASAs, namely the Cartan subalgebra:

1. Fy={Li2 Laa, .- Ly 1. ps) if p—kis even;

2. Fk ={L12, L3a, ..., Lp—k—Z.p—k—l} if p— k is odd.

The splitting MASAs would then bel'(k) @ F;, but for p — k odd, the subalgebra
is not maximal. The elements of a non-splitting MASA would have the fofm=

Loai1+ Z;’;f o, ;P wherea = 1,3,..., p —k — 1. After imposing the commutation

relations [X, Y] = 0 we obtain that alt,, ; = 0. There are no non-splitting MASAs. [J

3.2. MASAs of o(p, 1)
We present here some results from [12] on MASA®@Gf, 1). A MASA of o(p, 1) can be

1. Orthogonally decomposable. Two decomposition patterns are possible, namely:
@12,0® k,1) fork=0,1,...,p—2 (I > 1) where(k, 1) is a MANS;
(b) (L, 1,012 0).

2. Orthogonally indecomposable. Then the MASA is a MANSGp, 1).

A representative list 00 (p, 1) conjugacy classes of MANSs of p, 1) is given by the
matrix sets

0 « 0 1
X = (0 0 —ocT) K = ( 1, ) a=(a,...,a,) aj €R. 3.1)
00 0 1

The entries inx are free, and the dimension &f is hence
dmM=p—1=p. 3.2)

The algebrav(2/ + 1, 1) has a single (non-compact) Cartan subalgebra, corresponding
to the orthogonal decompositid2, 0) @ (1, 1). The algebra(2/, 1) has two inequivalent
Cartan subalgebras, corresponding to the decompositi@®) @ (0, 1) (compact) and
1,0 & (1,1 & (2, 0) (non-compact).

The situation is illustrated in figure 1.

3.3. Behaviour of MASAs of e(p, 0) under the action of the group+(pl)

Theorem 3.2All MASASs of e(p, 0) inequivalent undek (p, 0) are also inequivalent under
the action of the grou@ (p + 1, 1) and are also MASAs of(p + 1, 1).
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12,00+ (k1) (@l p>=2)

oD

2,00+ (1,1)+ (1,0

o(p,1)

OID & MANS (all p > 2)

Figure 1. MASAs of o(p, 1).

Proof. A MASA of e(p, 0) can be represented in matrix form as follows:

My 0
B : 0 a; .
Me = M, 0 M; = —a: 0 L=
Ok+ XT
01
I
Ke = I, )
0,

which corresponds in(p + 1, 1) to the following matrix realization:

M, 0
M, = M, 0
0 «x 0
Oy, —xT
0
Iy
1
Ke = I
1

(for p even)

a; €R

(3.3)

(3.4)

which is an orthogonally decomposable MASA«fp + 1, 1) with decompositiori (2, 0) ®

MANS of o(p — 2/ + 1, 1) (realized as in equation (3.1)).

3.4. Summary of MASAs of e(p, 0)

The classification of MASAs ofe(p,0) can be summed up in terms of orthogonal

decompositions of the Euclidean spaiép, 0) = M (p).

O
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Theorem 3.31. Orthogonally indecomposable MASAs exist only fer= 1 andp = 2.
Namely

p=1 {P1} (3.5)
p=2 {M12}. (3.6)

2. All MASAs of e(p,0) are obtained by orthogonally decomposing the spate)
according to a pattern

M(p) =IM(2) & kM (1) p=2+k (3.7)

and taking a MASA of type (3.6) in eacl (2) space and type (3.5) in eadlfi(1) space.
3. For each partitiorp = 21 + k, 0 < I < [p/2] we have precisely one conjugacy class of
MASASs, both under the isometry group(p, 0) and the conformal group(p + 1, 1).

4. MASASs of e(p, 1)

4.1. Splitting MASAs of e(p, 1)

For e(p, 1) only the valuesc_. = 0,1 andky = O, 1 are allowed, while 6< &, < p. We
can write a MASA in the following form:

Mo y'
M1 0
M(k+7 k—7 kO) =M=
M, 0
.
O, (4.1)
0,
Ko
Iy
Ke= SsgnKo = (p —ky — 21, 1)
I,
0,
where
Miz( 0 a,-) x € Rk,
—da; 0

From now on we will only write the form ofMy, y and Ky together with conditions

on the values/ and k,. The complete MASA can be obtained by substituing the
appropriateMy, y and Kg in equation (4.1). We denote the dimensions of these MASAs as
dimM (ky, k_, ko) =d.

Theorem 4.1Three different kinds of splitting MASAs exist. They are characterized by the
triplet (ky, k_, ko):

(A) M(k+s 17 O)! O< k+ < p'
My=0eR y'=zeR and Ko=-1 (4.2)
p—kiiseven, 0< 1 < 2(p—ky),d =dimM(ky, 1,0) = 1+I+ks, [3(p+3)] < d < p+1;
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(B) M(k+,0,0),0<kr <p—1:

) I I B

wherep—k, is odd, 0< 7 < 3(p—ky—1),d = dimM(k.,0,0) = 1+1+ky, [3(p+2)] <
d < p;
(C) M(k+,0, 1), 0<k+ g p—2

0 « 0 z 1
Mg=|0 0 —a y'=1{0, Ko = 1, (4.4)
0 0 0 0 1

where I< u < p—1and 0< !/ < %(p—k+—2),z eR,a e R d =dimM(k,,0,1) =
pHl+ke+1L[3(p+3)] <d < p.

All entries g;, x, z, « andc are free.

Proof. Let us use the representation (2.1)e@p, 1). The translations are represented by
the matrixY with X = 0. We run through the three translation subalgelffaixed in
theorem 4.1 and for each of them find their centraligéf) in o(p, 1), i.e. the set of
matricesX andY, such that we have

[Y(X,0),Y(0,a)] =0 (4.5)

for the chosen set of the translatiams We must then determine all MASAs @f(T') such
that they commute only witll and with no other translations.

(A) For T = T(k,,1,0) we haveC(T) ~ o(p — k., 0) which has only one MASA: the
Cartan subalgebra. The conditipn— k. being even is needed, otherwise the MASA will
commute withk, + 1 positive length vectors. We thus arrive at eq.(4.2).

(B) ForT = T(k.,0,0) we obtainC(T) ~ o(p — ki, 1). The MASAs ofo(p — ki, 1)
are known (see section 3.2 above and also [12]). Any MASA@f — k., 1) containing
a nilpotent element will also commute with an isotropic vectorZin not contained in
T (k.,0,0). Hence we need only to consider a Cartan subalgelsgof k. , 1). Moreover,
it must be non-compact, or it will commute with a negative length vectdr.irFinally, if
p — k, is even, the MASA will commute withk, + 1 positive length vectors . We
arrive at the result in (4.3).

(C) TakeT = T(k,,0,1). We obtainC(T) ~ e(p — ky — 1,0), an Euclidean Lie algebra
realized as a subalgebra ofp — k., 1), e.g. by the matrices

0 v 0
Z=(0 R =T (4.6)
0 O 0

whereR + RT =0, R € Rw—k+=Dx(p=ki=D) 'y, ¢ RIx(p—ks—D)

Applying theorem 3.1 we obtain the result given in (4.4). The results concerning
the dimensions of the MASAs are obvious; they amount to counting the number of free
parameters iy, M;, y andx in the matrix (4.1). O
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4.2. Non-splitting MASAs of e(p, 1)

First we describe the general procedure for finding non-splitting MASAS of ¢).
Every non-splitting MASAM (k., k_, ko) of e(p, ¢) is obtained from a splitting MASA
by the following procedure.

1. Choose a basis faf (k. , k_, ko) and T (ky, k_, ko) e.9. C(ky, k_, ko) ~ {B1, ..., By},
T(k+1 k,, ko) ~ {le s XL}
2. Complement the basis @f(k, , k_, ko) to a basis ofl (n).

T(n)/T (ks k_, ko) = (Y1, ..., Yn} L+N=n.

3. Form the elements

N
By=B.+ ) &Y a=1,...,J 4.7
j=1

where the constan®,; are such thaB, form an Abelian Lie algebraf,, B,] = 0. This
provides a set of linear equations for the coefficiedfs. The solutionsx,; are called
1-cocycles and they provide the Abelian subalgeb&s., , k_, ko) ~ {B., X} C e(p, q).

4. Classify the subalgebrad (k. , k_, ko) into conjugacy classes under the action of the
group E(p, ¢). This can be done in two steps.

(i) Generate trivial cocycles,;, called coboundaries, using the translation gréip)

" B,e P = By + pi[ P, Bl = B+ Y _ ta ;. (4.8)
j

The coboundaries should be removed from the set of cocycles. If wedave 1,;
for all (a, j) the algebra is splitting (i.e. equivalent to a splitting algebra).

(ii) Use the normalizer of the splitting subalgebra in the graufp, ¢) to further simplify
and classify the non-trivial cocycles.

Theorem 4.2Non-splitting MASAs ofe(p, 1) are obtained from splitting ones of type
in theorem 4.1 and are conjugate to precisely one MASA of the form

() for u > 2:

0 «o 0 Z
Moz(O 0 —aT) yTz(AaT) (4.9)
00 O 0

where A is a diagonal matrix withiy =1 > |ag| > -+ > |a,| > 0 and TrA =0, Kj is as
in (4.4)
(i) for u = 1 we have a special case for which the non-splitting MASA has the form

0 a O z 00 1
Mo=(o 0 —a) yT=(o) K0=(o 1 o). (4.10)
00 O a 100

No other non-splitting MASAs oé(p, 1) exist.
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Proof. The non-splitting MASA is represented in general as follows:
Mo Bo
M, T

- (4.11)

M, B

Ok+ )CT
01

where g € R™>*P~%-2) andg; € R¥*2,i = 1,...,1, depend linearly on the free entries

in the MASA of o(p, 1), i.e. the matrices\;, 0 < i < /. We impose the commutativity
[Z., Z)] =0 and obtain

MBT =Ml i=0,...,1 (4.12)
From equation (4.12) we see that vectgrdepends linearly on the matricag only. The
block (M;, i), Bi = (a;,a;+1) fori =1,...,1 represents elements of the type
Lijt1+aiPi+ait1Pia 1<i<p.

In all cases the coefficients are coboundaries, since we have
explo; P + air1Pipa) Liiy1 €X(—o; P — i1 Piy1) = Lijp1 + o Pyg — o1 P (4.13)
The coefficientsy; can be chosen so as to anaglanda; 1. Thus we have

Bi =0 1<j<l (4.14)

for all non-splitting MASAs ofe(p, 1). Hence for case (A) in theorem 4.1 there are no
non-splitting MASAs. In case (B) the blockMy, o) represents the element of the type
L p+1+a,P, +ay.1P,y1. Here again the coefficients are coboundaries, since we have

explo, Py, +api1Ppi1) Ly pr1 €X(—ap Py —api1Ppy1) = Ly pr1+op Py + 0y Py
(4.15)

and the coefficienta; can be chosen so as to anaylanda,;. We have thag, = 0, and
there are no non-splitting MASAs. In case (C) the non-splitting pagfis as follows:

0 « 0 0
0O 0 — T T
Zo= o« Fo (4.16)
0 0 0 vy
0 O 0 0]
Commutativity [Z,, Z] = O gives us the following conditions:
oy =do'Bg (4.17)
a'y =aly yeR (4.18)
which gives
Bs = Aa” (4.19)
y=pa’ (4.20)

where A is a matrix andu is a row vector.
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Looking again at the commutativity condition with equation (4.20) satisfied, we find
that

A=AT and w=0. (4.21)

The symmetric matrixd represents the 1-cocycles. The coboundaries are represented by the
matrix 8/ and we use them to set Air= 0. For further simplification and classificaation

we use the normalizer of the splitting MASA in the groupp, 1). The normalizer is
represented by block diagonal matrices of the same block structure as in (4.1). The part
acting onMj is represented by

G = diagg, Go, g1, 1) satisfying GoG§ = 1. (4.22)
Computing

GMoG™t = M} (4.23)
gives the following transformation of:

1
A = E(GOAGg). (4.24)

We use the matribxG, to diagonalizeA and to order the eigenvalues. The normalization

a1 = 1 is due to a choice of. The proof of case (ii) is almost identical to the previous
one and we omit it here. The dimension of the non-splitting subalgebra is the same as the
dimension of the corresponding splitting subalgebra. O

4.3. A decomposition theorem for MASAs of e(p, 1)

Again, all the results of this section can be summed up in a decomposition theorem.
Theorem 4.31. Indecomposable MASAS @f(p, 1) exist for all values ofp, namely

p= 0: {Po} (425)
p= 1 {Lo]_} (426)
p=2: {Py— P1,Lo» — L12+ x(Po+ P1)} k=0,=+x1 (4.27)
p}s: {Po — P, Loj—L]_j—I—ajP,‘)} j=2,...,p
ax=1>lag| =2 --->1ap| 20 Z%‘:O (4.28)
or a2=a3=-~-=al,=0.
MASAs corresponding to different values of or different setgay, ..., a,) are mutually
inequivalent under the connected componentEgp, 1). If the entire groupE(p, 1) is
allowed (containingO(p, 1), rather than onlySO(p, 1)), thenx = —1 is equivalent to

¥ =1 and can be omitted.
2. All MASAs of ¢(p, 1) are obtained by orthogonally decomposing the Minkowski space
M (p, 1) according to the pattern

M(p,1) = Mk, 1) ®IM(2,0) & mM(L,0)

p=k+2+m 0<k<p o<z<[§] (4.29)
and taking a MASA of the type (3.5) for eadil (1), of the type (3.6) for eaciM (2) and
of the type (4.25), (4.26), (4.27) or (4.28) fof (k, 1).

3. Each decomposition (4.29) and each choice of constaautsl{a;}, respectively, provides

a different MASA (mutually inequivalent under the grodjip, 1)).
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5. Embedding of MASASs of e(p, 1) into the conformal algebra o(p + 1, 2)

5.1. Introductory comments

Let us realize the algebra(r, 2) by matricesX satisfying
XK+KX"=0 K,XeR K=KT Sgnk = (r, 2). (5.1)

A MASA of o(r,2) will be called orthogonally decomposabl@OD) if all matrices
representing the MASA can be simultaneously transformed by some n@friogether
with the matrixK, into block diagonal sets of the form

X]_ Kl
X5 K>

<
Il
o\
Il

(5.2)
X; K;
X =GXG1 K = GKG' G € GL(r + 2, R).

If no such matrixG exists, the MASA isorthogonally indecomposabl@ID).

A MASA can be orthogonally indecomposable, bot absolutely indecomposakli@ID,
but NAOID). This means it is orthogonally decomposable after complexification of the
ground field.

Let us now present some results on MASA®0f, 2) which can be extracted from [12].

5.2. MASAs of o(r, 2)
We shall first consider > 3, then treat the case= 2 separately.
Proposition 5.1.Precisely three types of MASAS exist for= 2k > 4, 2 forr = 2k+1 > 3:

1. Orthogonally decomposable MASAs (any

2. Absolutely orthogonally indecomposable MASAs (af)y

3. Orthogonaly indecomposable, but not absolutely orthogonally indecomposable MASAs
(r = 2k).

Proposition 5.2.Every orthogonally decomposable MASA ofr, 2) can be represented in
the form (5.2) where eachX;, K;} represents an orthogonally indecomposable MASA of
lower dimension. The allowed decomposition patterns are

1. r,2)=(s,2)+1(2,0) r=s+2 1>1

2. r,2) = (5,2 + (1, 1) +1(2,0) r=s+2 +1.

A maximal Abelian nilpotent subalgebr@ANS) of o(p, ¢) is characterized by its
Kravchuk signaturgx n 1), a triplet of non-negative integers satisfying

2tpu=p+q n=0 1<Ai<qg<p. (5.3)

For a given MANSM the positive integei is the dimension of the kernel dif and
also the codimension of the image spaceVbf For a given signaturéx u 1) the MANS
M can be transformed into Kravchuk normal form, namely

0 A Y I,
X:(O S —KOAT) K:( Ko )
0 0 0 I,
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AeR™ y=—yYTeR™ SKo+KoS'T=0

SeRF™* Ko=K§ e R™ sgnKo= (p — A, q — ).
(5.4)
The matrix S is nilpotent, the matrixky fixed. The classification of the MANSs of p, ¢)
reduces to a classification of matricds S and Y satisfying the commutativity relation
[X,X']=0:
AKoAT = A'KoAT AS = A'S [S,8]=0. (5.5)
Two types of MANSs ofo(p, g) exist:

1. Free-rowed MANSThere exists a linear combination of therows of the matrixA
in (5.4) that containg: free real entires.

2. Non-free-rowed MANSNo linear combination of th& rows of A contains more than
u — 1 real free entries.

Proposition 5.3.An absolutely orthogonally indecomposable MASA«f, 2) is a MANS.
Three types of MANSSs 06(r, 2) exists. Using the metric
1 1
K = Ko Ko = I._» (5.6)
1 1
they can be written as follows.

1. Kravchuk signaturél r 1), free rowed

0 « 0
X=]0 0 —Kou' o € R, (5.7)
00 0

2. Kravchuk signaturgl r 1), non-free rowed
O a a 0 b 0
0 0a 0 -b
0 0 0 —af

X = 0 0 a,beR «oecRVC, (5.8)
—da
0 —a
0
3. Kravchuk signaturg2 r—2 2), free rowed
0 0 « X 0
0 0 aQ 0 —Xx
X = —Qa’ —a' o € RX0=2
0 0
0 0

r—2
0 =diagqs, ..., qr2) #0 > g =0
j=l

l=q1>1q > >1g--2 >0 (5.9)
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Proposition 5.4.The algebrao(2k,2),k > 2 has precisely one class of orthogonally
indecomposable, but not absolutely indecomposable MASAs. It can be represented by
the set of matrice$X, K}

0 a bl bl bk—l bk—l 0 C
—a 0 by —-bh b1 —bi_q —c 0
0 a —by —by
—a 0 —bq b1
X = (5.10)
0 a —bir_1 —br
—a 0 —br_1 b1
0 a
—a 0
1
1
K = Iy i (5.11)
1
1

The algebrao(2, 2) is exceptional for two reasons, namely we hagve= ¢ = even
and moreover, it is semisimple rather than simple. Two orthogonal decompositions exist,
namely those of proposition 5.2 with = 0,/ = 1 in the first case, and = 1,/ = 0
in the second. The MANS of equation (5.7) also exists in this case, as does the MASA
(5.10); however, those of (5.8) and (5.9) do not. On the other hand, two further MASAs
exist, both decomposable, but not orthogonally decomposable. In terms of matrices, they
are represented by

a b
a 0o J 0 1
X = K = J = (5.12)
—a —b J 0 1 0
—a
and
a b
—b a 0 J
X = K = < ) (5.13)
—a —b J 0
b —a

respectively. Thus(2, 2) has six classes of MASAs. Propositions 5.1-5.4, as well as the
results foro(2, 2), are proved in [12].

Let us now sum up the results on MASAs afp, 2) in terms of the ‘physical’ basis
(2.7), (2.26), starting from the orthogonally indecomposable ones.

1. The MANS, equation (5.7), af(r, 2) corresponds to the translations
{Po, P, ..., Pr_1} (5.14)
and is contained ir(r — 1, 1).
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2. The MANS, equation (5.8), af(r, 2) corresponds to
{Po— P1,Loa— Li2+ Po+ P1, Ps, ..., Pr1} (5.15)

and is contained ir(r — 1, 1).
3. The MANS, equation (5.9), af(r, 2) corresponds to

{Po— P, Pk +qu(Lox — L), k=2,...,r — 1} (5.16)

and is contained ir(r — 1, 1).
4. The MANS, equation (5.10), af(2k, 2) corresponds to

{2(Los+ Las+ -+ -+ La—22k—1) + (Po — P1) — (Co + Cy),

Pi+ Piy1+Loj+Lij—Loj+1—Lij+1,j=2,...,2k — 2, Po+ P1)

(5.17)
and is not contained ia(r — 1, 1).
5. For theo(2, 2) case, equations (5.12) correspond to
{Po— P1, D — Lo1} (5.18)
and equations (5.13) correspond to
{D — Lo, Po— P1+ (Co + C1)}. (5.19)

They are not contained ia(1, 1).

In the orthogonally decomposable MASAs each component is an orthogonally
indecomposable MASA of one of the types listed above.
5.3. MASAs of e(p, 1) classified under the group @(p 2)

Let us make use of the realization (2.28) of the algelia+ 1, 2) and chooseK as in
(4.4). The algebra(p, 1) C o(p + 1, 2) is represented as follows:

O p. o p_ 0
0 B 0 —p_
X=|0 —yT R BT —af p—, P+, keR
0O 0 y —k 0
0O O 0 —py 0
a, B,y e R>-D R=—R"T e RP-Dx=D  (520)

In equation (5.20)R represents rotations in the subsp@e?, and furthermore, we have
p-~ Pyp— P p+~ Po+ P1 o~ (P ..., P
k~ Lo1 B~ (Loz— L1, ..., Lop — L1p) (5.21)
y ~ (Lo2+ L12, ..., Lop + L1p).
We shall use a transformation represented by a mairix O(p,2), G € E(p, 1),
namely
Go
G = 1,1 GXGl=Xx GKG" =K. (5.22)
Go
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The transformation (5.22) witliig = (2 (1)) leavesRk and Py — P; invariant, interchanges
aandg, i.e. P, andLo; — L1j (j = 2,..., p) and takesLgy, Po+ P1 and Lg; + Ly; out
of theo(p, 1) subalgebra that we will use to conjugate different MASA%@#, 1) that are
inequivalent undegf (p, 1).

Let us now consider the individual decompositions of the spéfg, 1) listed in
equation (4.29) of theorem 4.3.

First of all we note that the presenceaqR) subalgebras acting in the (2, 0) subspaces
(for I > 1) implies an orthogonal decomposition of the corresponding MASA(pf+1, 2).
We are then dealing with Abelian subalgebras (ASA) of the form

ASA[o(p + 1, 2)] = [[0(2)] ® ASAlo(j + 1, 2)] j+2=p. (5.23)

From now on we only need to consider subalgebras(¢f1l) C o(j + 1, 2) and their
possible conjugacy unde?(j + 1, 2). These MASAs ofo(j + 1, 2) contain no rotations
L. The following situations arise.

1. k=0,m=p—2in (4.29) andj = m. The MASA of ¢(j, 1) consists of translations
only:{Po, P1, ..., P;}. This is the free-rowed MANS af(j + 1, 2) with Kravchuk signature
(1 j+11) asin (5.7) and (5.14).

2. k=1m=p-21—1in(4.29) andj = m+1. The MASA ofe(j, 1) is an orthogonally
decomposable MASA ob(j + 1, 2) of the form

MASA[0(j + 1, 2)] = o(1, 1) & MANS[o(}, 1)]

where the MANS ofo(j, 1) has the Kravchuk signature j—1 1) as in (3.1). In the
physical basis it iLo1, P, ..., P;}.

3. k=2m=p—21—-2in (4.29) andj =m + 2, k # 0 in (4.27). We have the MASA
{Loo— L12£(Po+ P1), Po— P1, P», ..., P;}. This is a non-free-rowed MANS af(j + 1, 2)
with Kravchuk signaturg¢l j+1 1) as in (5.8) and (5.15).

4 k=2m=p—-—21—2in (4.29) andj = m+ 2, «k = 0 in (4.27). We have the
MASA {Lo> — L1, Po — P1, P3, ..., P;}. The transformation (5.22) takes this algebra
into {Po — P1, Po, Loz — L13, ..., Loj — L1;}. Thus, if we are interested in conformally
inequivalent MASAs, we must impose, far # 0, j > 3, i.e.m > 1 in (4.29). This
MASA is a free-rowed MANS ob(j + 1, 2) with Kravchuk signaturég2 j—2 2) as in (5.9)
and (5.16).

5. k23 m=p—-2—-kin(429) andj =m+k,ap=az3=---=a; =0in (4.28). The
MASA is {Po— P1, Loo— L12, ..., Lok — L, Pit1, ..., P;} and is conformally equivalent
to {Po — P1, Po, ..., P, Logy1 — Ligs1, ..., Loj — L1j}. It is a free-rowed MANS of
o(j + 1, 2) with Kravchuk signaturg2 j—1 2) as in (5.9) and (5.16).

6. k>3 m=p—2—kin(429)s0j =m+k, |az] =12 |ag| > --- > |a;|in ((4.28).
The MASA is{Po— P1, Loo— Li2+axPs, ..., Log — L + ai Pr, Peya, - .., P;}. Again we
have a free-rowed MANS af(j + 1, 2) with Kravchuk signaturg2 j—1 2) as in (5.9) and
(5.16).

We see that the MASAs listed above in cases 4, 5 and 6 are all related. Indeed, let us
fix some value ofj and consider the MANS, equation (5.9),afj + 1, 2). Cases 4 and 5
correspond to the first two rows in (5.9) being

0 0O x O 0 0 a -+ 0 .-~ 0 x O
= . (5.24)
0 08 0 —x 00 0 -+ 0 Brya -+ B 0 —x

The transformation (5.22) with

o= (1 ) 529
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puts (5.24) in the standard form with

(a> _ ( a oo P o B ) (5.26)
B aay - aay bPiia - bB
with j — 1 free entries in row 1 an@ = diag(al;_1, b1;_;), with
k—Da+(j—kb=0 b+a. (5.27)
An exception occurs whem = 0. The algebra then i§Pg — P1, Lop — L12, ..., Loj —

L4;}. This is equivalent tq Py + P1, P», ..., P;} and is hence not maximal in(j + 1) (it
would correspond t@ = 0 in ((5.9), which is not allowed).

Case 6 can also be transformed into the MASA of equation (5.9), i.e. equation (5.16)
by a transformation of the form (5.22) wiiy satisfying

b 1
G0=< d) btar£0  (k—Dectdla+ - +a)+md=0.  (5.28)
C

Thus, all MASAs ofe(k, 1) discussed above in cases 4, 5 and 6 are special cases of the
free-rowed MASA (5.9) ob(j +1, 2) with Kravchuk signaturg2 j—1 2). To determine the
decomposition of the spadd (j, 1), consider a general transformation of the type (5.22).
The entries depending anin the first two rows ofX transform as

(a b)<a:>=(“m+bgv ad — be #0. (5.29)
c d aQ a(c+dQ)

a+bQ =diaga+bqi,a+bqy, ...,a+ bgj_o) (5.30)

To obtain a decomposition we must annul as many as possible of the elements in the
diagonal matrix (5.30) by an appropriate choiceaofand 6. This number is equal to
the highest multiplicity of an eigenvalue of the matgx Since we have T = 0, the
multiplicity is at mostj — 3. Let us order the eigenvalues in such a manner that the last
entry in Q has the highest multiplicity equal t@ We then choose andb in ((5.30) so
that the matrix in (5.29) has the form

a/ az ... a‘y O e 0 .
)= r4s=j (5.31)
ﬁ rao2 .- Tl 131 ,Br
i.e. the MASAs

{Po— P1, Po+ra(Lop— L12), ..., Py +ry(Los — L1y), Psga, ..., Py}

s

ri#0 2<j<s Zr,-:O

i=2

We have

re=121r3| = --- 2 Irs| > 0. (5.32)

Each integers and set of numbergr, ..., ry) corresponds to a®(p + 1, 2) conjugacy
class of MASASs ofe(p, 1).
Finally, let us sum up the above results as a theorem.

Theorem 5.1A representative list of maximal Abelian subalgebras of the pseudo-euclidean
Lie algebrae(p, 1) that are mutually inequivalent under the action of the conformal group
O(p + 1, 2) coincides with a list of the MASAs of(p + 1, 2) of the form

MASA[e(p, D] ~ l[0(2)] & M; j=p—2 (5.33)

where M; is a MASA of o(j + 1, 2) contained in the subalgebed;, 1). Specifically we
have the following.
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1. M; ~ o(1,1) @ Mo whereM, is a free-rowed MANS ob(;j, 1) with Kravchuk signature
(1j—11 asin(3.1). The MASA ok(p, 1) is

{L12, L34, ..., Lo—121} @ {Pary1, ..., Pp—1} @ {Lop}. (5.34)

2. M; is a free-rowed MANS ob(j + 1, 2) with Kravchuk signaturgl j+1 1) as in (5.7).
The MASA of e(p, 1) is

{L12, L3a, ..., Ly_12)} ® {Po, Pat1, ... Pp}. (5.35)

3. M; is a non-free-rowed MANS oé(j + 1, 2) with Kravchuk signaturgl j+1 1) as in
(5.8). The MASA ofe(p, 1) is

{Li2,..., Ly 12} ® {Lozy1— Lp2a1+€(Po+ Py), Po— Py,
P21+2, ey Pp_l} € ==+1. (536)

4. M; is a free-rowed MANS ob(j + 1, 2)) with Kravchuk signaturg2 j—1 2) as in
(5.9). The MASA ofe(p, 1) is

{Li2, ..., Loa—12} ® {Pay1+ gay1(Lo2+1 — Ly 241),
ey prl + prl(LO,pfl - Lp,pfl)v Po — Pp}- (537)
The algebra (5.34) is conformally equivalent to

{Li2, ..., Loa—121} ® {Po— Pp, (Lo2i+1 — Lp241) + az1Pay1,

ey (Los - Lps) + asPX, PS+1, ey Pp,]_} (538)
r+s=j Z a, =0 ayy1 =12 laz2| =2 --- 2 lag] > 0 (5.39)
k=21+1

wherep — s — 1 is the highest multiplicity of any of the numbegg 1, ..., g,.
Let us give some examples of the last case in theorem 5.4(fod).

() {Po— P1, Lop— L12, Loz — L13} ® Las (j = 3). It can be represented as follows:

0 a
—a O
0O 00 0 d4d O
0 0b ¢ 0 —d
M =
0O 0 —b
0 0 —c
5.40
0 0 (5.40)
0O O
I
Jo (01>
K = Jo =
b 1 0

Jo
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which is equivalent unde© (6, 2) to

0 a
—a O
0 0Ob ¢ —d O
M 0O 000 O d (5.41)
0O 0 0 -—-»b
0 0 0 —c
0O O
0O ©O

Here K is as in (5.40). This algebra {d.45, Po — P1, P2, P3} and is not maximal ir(5, 1)
since we can ad¢lPy + P1}.
(iiy {Po— P1, Loa— L12, Loz — L13} ® { P4, Ps} (j = 5). It can be represented as

0O Oa b O 0 e 0
0 00 0c d 0 —e
0 000 0 -—a
J2
0 00O 0O 0 -—-b
M = K = Iy . (5.42)
0 0 —c
J2
0 0 —d
0 0
0 0
This is equivalent unde® (6, 2) to
0 0 a b ¢ d e 0
0 0O —a -b ¢c d 0 -—e
0 0 0 0 a -—a
, 0 0O 0 0 b —b
M = (5.43)
0 0 —¢ —c
0 0 —d —d
0 0
0 0

andM' ~ {Py— P1, Lo — L12 — P2, Lo3— L13— P3, Loa — L1a+ P4, Los — L1s+ Ps}. We
see that here we have a free-rowed MANS @, 2) with Kravchuk signaturg2 4 2).

(iii)y {Po— P1, Loz — L12+ P2, Loz — L1z +aPs, Los— L14— (1+a)Pa, Los — L1s} ~ M.
This algebra is conformally equivalent td’ ~ {Py — P1, P + Loa — L12, P3 + a(Loz —
Li3), P4 — (14 a)(Los — L14)} and hence not figure in the list given in theorem 5.1 (i.e.
M’ will figure, but M will not).

6. Separation of variables in Laplace and wave operators

6.1. MASAs and ignorable variables

Let us consider an-dimensional Riemannian, or pseudo-Riemannian space with metric
ds? = gir(x)dx’ dx* (6.1)
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and isometry grouf;. The Laplace—Beltrami equation on this space is

AY = EV
SN 0 (6.2)
A — -1/2 : 1/2 lj_. — de »
B=¢ ”2::1 FIER e g = det(g;))
and the Hamilton—-Jacobi equation is
.35 a8
ax! dx/

We shall be interested in multiplicative separation of variables for equation (6.2) and
additive separation for equation (6.3), i.e. in solutions of the form

W) =[]t cn...cn) (6.4)
i=1

S() = Si(xicr, ..., ) (6.5)
i=1

respectively. Here the; are parameters, the separation constants yandnd S; obey
ordinary differential equations.

A variable x; is ignorable [8] if it does not figure in the metric tensgy,. Ignorable
variables are directly related to elements of the Lie algebra L of the isometry group G [7].
Indeed, letXy,..., X; € L be a basis for an Abelian subalgebralof We can represent
these elements by vector fields shexpressed in terms of the coordinates_et us further
assume that these vector fields are linearly independent at a generio poitt. We can
then introduce coordinates (locally) o

(X1, ..., %) —> (a1, ..., 00,81, ..., 5K) l+k=n (6.6)

which ‘straighten out’ this algebra

X; =

" 9

i=1...,1 (6.7)

The variablesy; are the ignorable separable variables [7, 8]. Each MASA of the isometry
algebraL will provide a maximal set of ignorable variables, both for the Laplace—Beltrami
and Hamilton—Jacobi equations.

Specifically, for the space¥ (p, ¢) of this paper, we generate the coordinates as follows.
We use the realization (2.2) of the grodfip, ¢) but restrictH to be a maximal Abelian
subgroup ofE(p,q). We haveG = (expX), where X is one of the MASAs we have
constructed. We then write

(i) — e (i) s € RPH (6.8)

where s represents a vector in a subspace Mfp, g) parametrized by non-ignorable
variables(sy, ..., sx), and X is a MASA of e(p, ¢), parametrized by a set of ignorable
variables.
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6.2. Ignorable variables in Euclidean space M(p)

For Euclidean space the above considerations are entirely trivial. In Cartesian coordinates
we have

A=—+-+ —. (6.9)
X

In view of theorem 3.3 we split the spas£(p) into a direct sum of one and two-dimensional
spaces. In eaciM (1) we have a Cartesian coordinatg corresponding to the translation
P;. In each subspack¥ (2) we have polar coordinates, e&f1» = 9/da; corresponds to
X1 = §1 COSwr1
) (6.10)
X2 = 851 SINo1

with «y ignorable.

6.3. Ignorable variables in Minkowski space M(p, 1).

Here the situation is much more interesting. In Cartesian coordinates we have
Opa¥ = EW
92 92 92 (6.11)
—_— e — - —.
ax? ax2  9x§
Consider the decomposition (4.29) in theorem 4.3. In each indecomposable subspace we
introduce a separable system of coordinates with a maximal number of ignorable variables.
Each spac@/ (1, 0) corresponds to a Cartesian coordinat&?2, 0) to a polar coordinate as
in equation (6.9). Now let us consider the coordinates correspondifj(ko1).

M, 1): X0

ALB = Dp,l =

M@, 1): Xo = p COShu x1 = s Sinha
X0 = p Sinha X2 = 5 coshu

(for x2 — x2 = +s2, respectively)

M (2, 1): the algebra (4.27) witlkr = 1 provides two ignorable variables,anda and we
have

X0 +x1 = 2+ 2a
Xg— X1 = ra®N2 + %a3 —zv/2 (6.12)

X2 = —a®— ar\/é.
The coordinates (6.12) were obtained using equation (6.8) with
0 av?2 0 V2
0 0 —-av2 0
0 0 0 av?2
0 O 0 0

G=¢" X =

We then have

0 d
Py— P = —a—Z Lop— Lo+ Po+ P = % (614)
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and the operator in thi8Z (2, 1) subspace oM (p, 1) is
2 119 19 2 3 119 139 119
|:|2’1 = \/E \/——

9oz 272942 T 292 2 orda | Jaraz  ror | Jariaa

(6.15)
The separated solutions of the wave equation (6.11) have the form

W = R (r)e"e?. (6.16)
The equation forRg,,;(r) = R has the form

R'+p(r)R +G(r)R =0. (6.17)
Using the transformation

R(r) = f(r)W(p)

F(r) = r3@0 exp(—m?rg i %) p=r2 (6.18)
we obtain the equation

W'+ p()W' +q(p)W =0 (6.19)
where p(p) andg(p) are
pp) = l_rk%k q(p) = —k? + 2ar® + A1'r* (6.20)

_(A-D=x(a— D2+ 4m?

/

1-2—¥=A A=3o0r} 2u=ImV2-E.
(6.21)

The solution of (6.19) is a confluent hypergeometric series [20].

Let us consider the spacd (k, 1) with k£ > 2 and the splitting MASA (4.28) with
a, =az = --- = a, = 0. The corresponding matrix realization is given by equation (4.1)
with My andy as in equation (4.4) and all the; andx absent. Applying equation (6.8)
with

0 « 0 Z 0
0 0 -« O :
X = s = relR (6.22)
0O 0O 0 O 0
0O 0O 0O O r
we obtain the coordinates
X + x0 = r\/i
1
Xk — X0 = —VOHXTTZ +Z«/§
x| = —roy (6.23)
Xk—1 = —TQ_1.

The wave operator in these coordinates is

2 k—19 1%kt 52
Oy1=2 — 4 = —. 6.24
k1 dzor + ro 9z + r2 :Zl: da? ( )
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The variableg and; are ignorable (only figures in equation (6.24)) and indeed we
have

0 ad
Po— P = —v/2— Lo — Ly = v/2—. (6.25)
0z 80[,'
The solution of the wave equation then separates
k—1
¥ =R(re=[[e (6.26)
i=1
with R(r) as follows:
1Y p? Er
R(r) =r*2exp( === ) exp( — ). 6.27
1 =r2exp( 1 =L Y exp( 5 627)
We have shown in subsection 5.3 that this MASA is conformaly equivalent to a
subalgebra of the algebra of translations, namel§xp- P, P1, ..., Pr_1). A consequence

of this is that we can relate these coordinates to a set of Cartesian ones. Indeed, we can
rewrite equation (6.24) as

[ 92 02 02 1
k1 = (o + 02 P (o + y)? |:—2 — = —2] (yo+ yo) 2% (6.28)
A ay1 0y;,
with
1
X1+ XxX0=— V2
Yo + Y
1 1 2 2 2
x1—xo=——7=——""—00 =Y~ — V) (6.29)
V2yotye 0 k
Yj .
X = —— j=1 ..., k=1
/ Yo+ Yk
We note, however, that the wave equation separates in coorditates:;) but not in
(Yo, Y15+ -5 i)+

Now consider the spac#f(k, 1) for k > 3 and the non-splitting MASA (4.28) with
a; # 0. The coordinates we obtain are

Xk—i-)Co:F\/é

1
Xp — X0 = —=(2z —raa’ +aAa’)

V2

X1 = (ql —ra; (630)

Xp-1 = (qx—1 — )—1.
The wave operator is

92 = 1 I S | 92
h1=2— — — ) =t+) ——| 6.31
T %ozor ; (qi—1) ) oz ; (q; —r)? (zm?) (6.31)
We see thaty, z are ignorable variables. The solution of the wave equation then separates
and we have
k-1
W= R(re"=] [e (6.32)

i=1
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with R(r) equal to

d _1 1 <& bi2 Er
R(r) = [1:!(‘]:‘ —r)? exp(—% Z ) exp(%) (6.33)

42q,-—r

i=

We mention that the three new coordinates systems, equations (6.12), (6.23) and (6.30)
are all non-orthogonal, hence the cross terms (mixed derivatives) in the corresponding forms
of the wave operator.

7. Conclusions

The classification of MASAs oé(p, 0) ande(p, 1) performed in this paper is complete,
entirely explicit and the results are reasonably simple. Indeed, they are summed up in
theorems 3.1, 3.2 and 3.3 fe(p, 0) and theorems 4.1, 4.2, 4.3 and 5.1 égp, 1).

In section 6 we have presented a first application of this classification. Namely, we have
constructed the coordinate systems (6.12), (6.23) and (6.30) which allow the separation of
variables in the wave equation and have the maximal number of ignorable variables. In
turn, these coordinate systems have further applications.

Thus, instead of the wave equation itself, let us consider a more general equation,
namely

[0+ V)]V = EW. (7.1)

First of all, it is possible to choose the potentialx) to be such that equation (7.1) allows the
separation of variables in one of the above coordinate systems. The obtained equation will
be integrable in that there will exist a complete seppafecond-order operators commuting
with H = O+ V and with each other. They will be of the form,.2 + fi(x;) where{X;} is

the corresponding MASA and; (x;) is a function of the corresponding ignorable variable.
The actual form off depends on the separable potentidgk) [21, 22].

The coordinates (6.30) have been used to construct equations of the type (7.1) that obey
the Huygens principle [23]. The Crum-Darboux transformation [24—26] can be used to
generate specific potentials(x) (depending on one ignorable variable in a given separable
coordinate system) that have specific integrability properties. In particular this provides a
method for constructing overcomplete commutative rings of partial differential operators
and ‘algebraically integrable’ dynamical systems [27-29].

The reason we bring this up here is that Crum-Darboux transformations have
traditionally been performed in Cartesian or polar coordinates. The fact that they can
be applied to other types of coordinates, associated with other types of MASAs, opens new
possibilities.

Work is in progress on the classification of MASAsdfp, ¢) for p > g > 2 [30].
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